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The Sun produces a fair amount of solar energy caused by the 
different solar activities that affect the terrestrial environment. 
The lowest part of the sun's atmosphere is photosphere gases 
that can be recognized by the disk of the sun and above parts are 
the chromospheres and corona. The three parts of the structure 
of the sun's atmosphere crucial to understand the nature of 
solar activities. The analysis of the study segregated monthly 
cyclic data of green line emission corona 530.03λ nanometers 
by appropriate stochastic models. After identifying stationary of 
each cycle along with total data is observed and generate 
autoregressive AR (p), MA (q) and ARIMA (p, d, q) models have 
revealed a linear difference and ARMA for a total span  based on  
minimization of  Akaike information criterion and Schwarz 
Beysian criterion. The parameters are examined by ACF and the 
PACF for different cyclic duration of Corona from 1944 to 2008. 
The models (0,1,1), (1,1,1) and (2,1,0) for cycles and (1,0,1) for 
total time series data were found the significance. The models 
obtained in this paper may be useful to understand and forecast 
the Coronal time series data.  

 

INTRODUCTION 
The Coronal Mass Ejection (CME) is an important phenomenon of the solar activity. The 
possible departures of CMEs explosion are in the Sun's Corona (Howard, 2006; Ebert, 
McComas, Elliott, Forsyth & Gosling, 2009). Solar eruption thrown into space at speed 
range from a few hundred to 2000 km/s of magnetic gas (Gopalswamy, Yashiro, Kaiser, 
Howard & Bougeret, 2001; Ebert et al., 2009). The sun's atmosphere typically refers to 
all the regions above the photosphere. Solar atmosphere separates into three layers, the 
photosphere, chromosphere, Corona on basis of temperature, density and composition. 
The lowest layer is photosphere and above the photosphere lie chromospheres and the 
Corona (Akhter, Abbas & Hassan, 2019). The Corona (Latin for crown) is shine brightly 
with reflected light. A circle of light around the sun at the time of solar eclipse (Akhter, 
Abbas & Hassan, 2018). The solar Corona can be seen when the moon is blocked out the 
photosphere.  
 

The solar Corona has very high temperatures of order in millions of degrees (Prabhakar, 
Raju & Chandrasekhar, 2013). The first spectrum of the green line spectrum 530.3nm 
discovered by two American astronomers Harkness and Young during a full solar eclipse 
in 1869 but figure was not clear (Schwenn, Inhester, Plunkett, Epple, Podlipnik, Bedford 
& Lamy, 1997; KP, 2014). In this connection, the Corona has number of components K-
Corona (kontinuierlichesspektrum), F-Corona (Fraunhofer), E-Corona (Emission) and 
T-Corona (Thermal). E-Corona (Emission) is composed of the line emission of visible to 
EUV (emission of ultra violate) due to various atoms and ions in the Corona. It contains 
many forbidden line transitions, therefore it contains many polarization states for real 
utilization. Some of strongest lines in this way are FeXIV 530.3nm (green-line; visible), 
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H-α at 656.3 nm (visible) and Lyman-α 121.6 nm (UV) (Akhter et al., 2018 and Akhter et 
al., 2018).  
 

The green line emissivity which is due to forbidden transition of the FeXIV ion, peaks in 
temperature of about 2 x 106 (Wang, Sheeley, Hawley, Kraemer, Brueckner, Howard & 
Schwenn, 1997) for comparison the red line 637nm FeX ion has its maximum emissivity 
at the temperature around 106 K. The green line Coronal emission is the brightest of all 
emissions in visible spectrum range (Schwenn et al., 1997; wang et al., 1997; Mariska, 
1992). This study will qualify the available Coronal Index data under stochastic models 
regarding different duration of Coronal emission cycles.  This study includes the AR, MA, 
ARMA and ARIMA models on the Coronal Mass Ejection data which are divided into six 
cycles of different lengths and duration including whole Corona data. Autoregressive 
(AR) are the models in which value of a variable in one period is related to its values in 
the previous periods. In this regard, the moving Average (MA) models account for the 
possibility of the relationship between the variables and the residuals from the previous 
periods.  
 

Autoregressive moving average combines both AR and MA terms. Lags of differenced 
series are referred as autoregressive and lags within forecasted data are referred as the 
moving average (Cooray, 2008). This study explores the Coronal emission green line 
cyclic data and used in Non-seasonal ARIMA models. Since the six cycles of different 
lengths of data are non-stationary therefore performing signify and modeling through 
removing the non-stationary by the series differencing (Gallager, 2012; Forouzan, 2000; 
Guttorp & Minin, 1995). The ARIMA modeling practiced in many research areas and 
confirmed the pattern of unclear data and considerable error (Lajos, 1996). The ARIMA 
model includes three types of parameters (p, d, q). Where p is number of autoregressive 
terms q is number of lagged forecast error and d is number of non- seasonal differences 
for stationary. The objective of these filters to end up with a white noise process which is 
unpredictable (Davis, Elósegui, Mitrovica & Tamisiea et al., 2004; Chatfield, 1989; and 
Sprott, 2003). 
 

MATERIAL AND METHODS  
In this research work Coronal emission FeXIV iron (The Green Line) data observed 
under stochastic methods. In this regards monthly data starting from 1944 to 2008 is 
distributed among six durations namely cycles (18, 19, 20, 21, 22 & 23) of different 
lengths and peak, including the whole data and they are (1944.06-1954.08), (1954.08-
1964.09), (1964.09-1976.04), (1976.04-1986.06), (1986.06-1996.03) and (1996.03-
2008.09) respectively. The minimum and maximum duration of Coronal cycle is 10.1 
years and 12.6 years respectively.  
 

Stochastic Autoregressive Models  
A stochastic process is relation of random variables (Max & Compute, 1997). A stochastic 
process is known as random process and it is a method is a collection of random variable 
over time or random variable representing collection of some arrangement of random 
values over time. These are time depend probability distribution maps and they vary 
either continuously or discrete with time, if they vary at discrete times, those times might 
be deterministic or random. This is the probabilistic part of a deterministic process. The 
method espoused for model selection in this study is: to check the stationary of the series 
and for model identification in different time series plots, ACF and PACF are constructed 
using actual, changes and transformed data. To transform data, Box Cox transformation 
is used.  
 

After the identification of the model, different stochastic ARIMA models are fitted on the 
-2log (like) Associated with the selection of the model, different model validation 
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statistics are recommended like Root Mean Square Error (RMSE), the Mean Absolute 
Percentage error, Akaike Information Criterion and Final Prediction Error Criterion and 
Polynomial determination (R2). These measures are computed for each applicant model 
and the model having smallest AIC is recommended by assuming to be closest to the 
unknown reality by which series is generated. Similarly graphical validation approaches 
are also applied e.g. Histogram, residual plots, and PACF, ACF plots of residuals for the 
selection of a parsimonious model.The general ARIMA time series model equation in 
terms of y is: 

 

𝑦𝑡⏞ = 𝜇 + ∅1𝑦𝑡−1 + ⋯ + ∅𝑝𝑦𝑡−𝑝 − 𝜃1𝑒𝑡−1 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞                                     (1) 
 

Here 𝜃1,𝜃2, ……….𝜃𝑞 are moving average parameters (of order q) and ∅1 ,∅2 ………..∅𝑝  are 

autoregressive parameters (of order p). Here in the general equation contains negative 
signs in the moving average parameter (θ’s) which is the convention introduced by Box 
and Jenkins. When the real numbers are fit into the equation, there is no doubt; negative 
sign doesn’t change the general theoretical properties of the model.  Although it flip the 
algebraic signs of estimated parameters are denoted by AR (1), AR (2),…, and MA (1), 
MA (2),…  etc..        

                 MA (q):𝑦𝑡⏞ = 𝜇 + 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞                                                 (2) 

                 AR (p):𝑦𝑡⏞ = 𝜇 + ∅1𝑦𝑡−1 + ⋯ + ∅𝑝𝑦𝑡−𝑝                                                 (3) 
 

In this ordinary multiple regression model, μ is the constant term, ϕ1 is the coefficient of 
the first lag of y, and so on. In this study  used a Non-seasonal ARIMA models. These are 
most appropriate models selected. Hence, ARIMA models defined on the dth difference 
of the original process. 

Where, ARIMA (0, 1, 1) model:  
Ŷt = 𝜇 + 𝑌𝑡−1 − 𝜃1𝑒𝑡−1                                                              (4) 

ARIMA (1, 1,1) model: 
   Ŷt= 𝜇 + 𝑌𝑡−1 + ∅1(𝑌𝑡−1 − 𝑌𝑡−2) − 𝜃1𝑒𝑡−1                                  (5) 

ARIMA (2, 1, 0) model: 
Ŷt = 𝜇 + 𝑌𝑡−1 + ∅1(𝑌𝑡−1 − 𝑌𝑡−2) + ∅2(𝑌𝑡−2 − 𝑌𝑡−3)                  (6) 

 

Stationary Tests for Autoregressive Models 
Stationary is a significant feature for extracting a time series approach. A time series 
model is not a predictable model if the assumption of stationary is not validated. 
Consequently, to extract a significant time series model the data should have stochastic 
stationary. The most prominent step in ARIMA box Jenkins methodology is to discover 
the integrated order. To check whether series is stationary or to make series stationary. 
Numerous stationary series have identifiable patterns for ACF and PACF. The mostly 
time series problem meets on non stationary in practice, while the AR and, MA in the 
aspects of ARIMA model confirms only for a stationary time series. The sense of series 
must be a weakly stationary series for an ACF. The understanding of the any particular 
lag autocorrelation is same in any case of where we are in time. The other way to define 
stationary series if the one autoregressive parameter must within the interval of -1<yt<1 
(Graham, 2003; Chatfield, 1989;). For this purpose, mean was compared and variance of 
distinct cycle of coronal green line emission, If series y is stationary (or trend stationary), 
then it has tendency to return to constant (deterministically trending) mean. 
 

Models Adequacy Tests 
This section, testimony the ARIMA models using green emission line cyclic data starting 
from 1944 to 2008. The objective is to settle the best model among the models that has 
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minimized error   between the Original values and estimated values. For this purpose 
quality of the models has been obtained by the following methods. Appropriated models 
were selected for which values of modified Root Mean Square Error (RMSE), Mean 
Absolute Percentage error (MAPE), Akaike Information Criterion (AIC) and Final 
Prediction Error (FPE). 
 

Root Mean Square Error (RMSE) 

RMSE =   √
∑ (𝑦𝑖−̂𝑦𝑖)2𝑛

𝑖=1

𝑛
                                                    (7) 

Where n is the number of time periods. 
 

Mean Absolute Percentage Error (MAPE) 
Mean absolute percentage error evaluates the quality of the fit, while removing the scale 
effect and not relatively penalizing bigger errors. 

MAPE =
100

n
∑

|yt−yt̂|

|yt|
n
t=1                                                     (8) 

 

Akaike Information Criterion (AIC) 
N is the number of data points, Vn is an index related to the prediction error, or the 
residual sum of squares, and p define the number of parameters in the following model. 

AIC = 𝑣𝑛 ( 1 +  
2𝑝

𝑁
)                                                          (9) 

 

Final Prediction Error Criterion (FPE) 
The Final Prediction Error Criterion (FPE) estimates the model-fitting error when the 
model is used to predict new outputs. For the FPE, an optimization model is the one that 
minimizes the following equation: 

FPE = 𝑣𝑛 (1 +   
2𝑝

𝑁−𝑝
)                                                       (10) 

To choose a model that minimizes the FPE this represents a balance between number of 
parameters and the explained variance. 
 

RESULT AND DISCUSSION 
In this study time series of monthly FeXIV 530.03λ (green line corona) data have been 
observed from 1944 to 2008 is distributed among six cycles of different lengths and 
duration including whole Green line data.These six cycles have observed and stationary 
of each cycle by comparison of mean and variance depicted in Table 1. 
  
Table1: Summary of Statistic for CMEs Duration 

Cycle Duration Observations Min Max Mean Variance 

Cycle 18 1944.06-1954.08 122 0.68 14.150 7.487 14.25 

Cycle 19 1954.08-1964.09 121 1.370 20.790 9.463 39.10 

Cycle 20 1964.09-1976.04 139 0.410 15.030 7.031 14.73 

Cycle 21 1976.04-1986.06 122 1.090 18.100 8.685 25.65 

Cycle 22 1986.06-1996.03 117 1.240 19.960 9.004 30.12 

Cycle 23 1996.03-2008.09 150 0.020 12.850 5.902 10.17 

Cycle 18-23 1944.06-2008.09 771 0.02 20.790 7.826 23.11 
 

There was found stationary no systematic change in the mean and variance. As Mostly 
time series are not stationary and the AR and MA aspects of an ARIMA model refer only 
to a stationary time series. These cycles followed different stochastic model for as cycle 
188, cycle 192 and cycle 193 has ARIMA (0,1,1) best fitted while cycle 190 and cycle 191 
best fitted on ARIMA (1,1,1). Cycle 189 best  fitted on ARIMA (2,1,0) and for the 
complete  dataset  is found  ARIMA (1,0,1). All the models are tested according to AIC 
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and SBC criterion. According to the above fitted models, cycle (18,22,23) MA (1) (order 1 
Moving average Modeling including 1 differencing), cycle (20,21) showing ARIMA (1,1,1) 
(order 1 auto regressive integrated moving average) only cycle 189 is showing AR (2) 
(order 2 autoregressive including 1 differencing) in overall data from 1944 to 2008 varies 
ARMA (1,0,1) (including AR and MA) model that has 0 difference while others cycle's 
settled on 1 differencing . All results are depicted in Table 2.  
 
Table 2 (a) Goodness of Fit Test for CME Cycles After Optimization. 

Cycle Model MSE RMSE SSE MAPE (Diff) MAPE 

Cycle 18 ARIMA (0,1,1) 1.378414 1.174059 166.7881 103.6183 15.72037 

Cycle 19 ARIMA (2,1,0) 6.5707 2.5633 788.48 186.0030836 22.1923534 

Cycle 20 ARIMA (1,1,1) 4.465011 2.113057 616.1715 300.1227 44.30332 

Cycle 21 ARIMA (1,1,1) 7.768228 2.787154 939.9556 300.9232 36.07252 

Cycle 22 ARIMA (0,1,1) 6.264226 2.502844 726.6502 197.014 22.83514 

Cycle 23 ARIMA (0,1,1) 2.320463 1.523307 345.7489 270.0241 399.183 

Cycle 18-23 ARIMA (1,0,1) 4.731095 2.175108 3647.675 100.7404 100.7404 

 
Table 2 (b) Goodness of Fit Test for CME Cycles After Optimization. 

Cycle Model FPE -2Log (Like) AICC AIC SBC 

Cycle 18 ARIMA (0,1,1) 1.378414 382.2179 386.3196 386.2179 391.8095 

Cycle 19 ARIMA (2,1,0) 6.793789 566.80030836 573.00758 572.800992 581.1635 

Cycle 20 ARIMA (1,1,1) 4.530193 598.7096 604.8887 604.7096 613.4913 

Cycle 21 ARIMA (1,1,1) 7.897699 591.8674 598.0726 597.8674 606.2548 

Cycle 22 ARIMA (0,1,1) 6.264226 542.522 546.6282 546.522 552.0292 

Cycle 23 ARIMA (0,1,1) 2.320463 548.7731 552.8553 552.7731 558.781 

Cycle 18-23 ARIMA (1,0,1) 4.743384 3388.181 3394.212 3394.181 3408.124 

 

Figure 1 a Plot of Cycle 18 and Fitted ARIMA 
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Figure 1: a: plot of cycle 18 and fitted ARIMA (0,1,1), b: Residuals plot of cycle 18, c:ACF plot 
of the cycle 18, d:PACF plot of the cycle 18, e: Residual of the ACF plot after applying 
ARIMA(0,1,1), f:Residual of PACF plot after applying ARIMA (0,1,1). label X axis number of 
the time lag and Y axis correlation coefficient between -1 & 1. Dotted line represent 95% 
confidence interval. 
 

Figure 2 a Plot of Cycle 19 and Fitted ARIMA 

 
 

 
 

 
 

Figure 2a Plot of Cycle 19 and Fitted ARIMA (2,1,0),b: Residual plot of cycle 19,c:ACF plot of 
the cycle 19, d:PACF plot of cycle 189, e: Residual of the ACF plot after applying the ARIMA 
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(2,1,0), f:Residual of PACF plot after applying ARIMA (2,1,0). label X axis number of time 
lag and Y axis correlation coefficient between -1 & 1. Dotted line represent 95% confidence 
interval.    
 

Figure 3 a Plot of Cycle 20 and Fitted ARIMA 

 
 

 
 

 
 

Figure 3a Plot of cycle 20 and fitted ARIMA (1,1,1), b: Residual plot of cycle 20, c:ACF 
plot of cycle 20, d:PACF plot of cycle 20, e: Residual of ACF plot after applying ARIMA 
(1,1,1), f: Residual of PACF plot after applying ARIMA (1,1,1). label X axis number of time 
lag and the Y axis correlation coefficient between -1 & 1. Dotted line represent 95% 
confidence interval.    
 

Figure 4a Plot of Cycle 21 and Fitted ARIMA 
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Figure 4a Plot of cycle 21 and fitted ARIMA (1,1,1), b: Residual plot of cycle 21, c:ACF plot of 
cycle 21, d:PACF plot of cycle 21, e: Residual of ACF plot after applying ARIMA (1,1,1), f: 
Residual of PACF plot after applying ARIMA (1,1,1). label X axis number of time lag and Y 
axis correlation coefficient between -1 & 1. Dotted line represent  95% confidence interval.    
 

Figure 5a Plot of Cycle 22 and Fitted ARIMA 
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Figure 5a Plot of cycle 22 and fitted ARIMA (0,1,1), b: Residual plot of cycle 22, c:ACF plot of 
cycle 22, d:PACF plot of cycle 22, e: Residual of ACF plot after applying ARIMA (0,1,1), f: 
Residual of PACF plot after applying ARIMA (0,1,1). label X axis number of time lag and Y 
axis correlation coefficient between -1 & 1. Dotted line represent  95% confidence interval.    
 

Figure 6a Plot of Cycle 23 and Fitted ARIMA 

 
 

 
 

 
 

Figure 6a Plot of cycle 23 and fitted ARIMA (0,1,1), b: Residual plot of cycle 23, c:ACF plot of 
cycle 23, D:PACF plot of cycle 23, e: Residual of ACF plot after applying ARIMA (0,1,1), f: 
Residual of PACF plot after applying ARIMA (0,1,1). label X axis number of time lag and Y 
axis correlation coefficient between -1 & 1. Dotted line represent  95% confidence interval.    
 

Figure 7a Plot of Cycle 18-23 and Fitted ARIMA 
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Figure 7a Plot of cycle 18-23 and fitted ARIMA (1,0,1), b: Residual plot of cycle 18-23, c: ACF 
plot of cycle 18-23, d: PACF plot of cycle 18-23, e: Residual of ACF plot after applying 
ARIMA (1,0,1), f: Residual of PACF plot after applying ARIMA(1,0,1). label X axis number of 
time lag and the Y axis correlation coefficient between -1 & 1. Dotted line represent  95% 
confidence interval.    
 

Further, we determined by analysis of autocorrelation and partial autocorrelation. Figure 
from 1to7 (c) and (d) showing non seasonal parameter (p, d, q) required for settlement of 
the model. In significant spikes cut through lag 1 and lag 12 of each cycle except lag 9 in 
cycle 18 and lag 24 in cycle 18-23 was observed in the plot of ACF. While in case of PACF, 
partial autocorrelation is dropping after lag 1 and more gradually over time, then 
compare these two lags of ACF of original data. For best adequacy of the model utilized 
both ACF and PACF to investigate setting of models on the cycles and complete dataset 
from 1944 to 2008. For this purpose, lowest Akaike Information Criterion and Mean 
Absolute percent error (MAPE) value of different cycles has competed in corresponding 
to different choices of p, d and q for the ARIMA models. All MAPE and AIC value depicts 
in TABLE 2 (b).  
 

Table 2 (b) AIC and MAPE values of different duration of CME cycles.  

 

 

For example cycle 18 has best fitted on ARIMA (0,1,1) among the models had both lowest 
values are AIC (386.3196) and MAPE (15.72037). A Similar process has adapted to other 
cycles. In residual analysis plot of ACF, PACF also drop at lag 1 and residual correlation 

Cycle MAPE AIC 

Cycle 18 (0,1,1) 15.72037 386.2179 

Cycle 19 (2,1,0) 22.19235344 572.8009692 

Cycle 20 (1,1,1) 44.30332 604.7096 

Cycle 21 (1,1,1) 36.07252 597.8674 

Cycle 22 (0,1,1) 22.83514 546.522 

Cycle 23 (0,1,1) 399.183 552.7731 
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inside the 95% confidence limit. The appropriate model residuals are likely to be random 
and close to zero. All residual plots depicted in the figure 1 to 7 (e) and (f). In this study 
figure showed some lags are zero, some are significantly differ from zero and tapering  
(one or two) lag outside the 95% confidence. There is no evidence to reject the model 
also, in connection of the residual analysis Table 2 (c) showed Root mean square error 
(RMSE) values vary final prediction error (FPE) values.  
 

Table 2 (c) RMSE and FPE Values of Different Duration CME Cycles 

Cycle RMSE FPE 
Cycle18 (0,1,1) 1.174059 1.378414 
Cycle19 (2,1,0) 2.5633 6.793477891 
Cycle20 (1,1,1) 2.113057 4.530193 
Cycle21 (1,1,1) 2.787154 7.897699 
Cycle22 (0,1,1) 2.502844 6.264226 
Cycle23 (0,1,1) 1.523307 2.320463 

 

For example, cycle 18 had both the corresponding lowest RMSE (1.174059) and the FPE 
(1.378414) values.Similarly cycle 21 had both corresponding highest RMSE (2.787154) 
and FPE (7.897699) values. It is directly proportional and also valid for other cycles and 
predictive power of ARIMA fitted models. In the end the all Model parametercoefficient 
and polynomial estimated, and standard deviation calculated by estimation method or 
from Fisher’s information matrix (Hessian) with estimation of asymptotically standard 
deviations. For each cycle coefficient, standard deviation and confidence interval is 
depicted in Table 3.  
 

Table 3 Coefficient Values of Parameter, Hessian & ASE Confidence Interval of Each Model 

Cycle Model P Value HSE LB95% UB95% ASE LB95% UB95% 
Cycle 18 (0,1,1) MA (1) -0.043 0.098 -0.235 0.149 0.091 -0.221 0.135 
Cycle 19 (2,1,0) AR (1) 

AR (2) 
-0.581 
-0.135 

0.090 
0.090 

-0.757 
-0.310 

-0.404 
0.041 

0.090 
0.090 

-0.758 
-0.312 

-0.404 
0.043 

Cycle 20 (1,1,1) AR (1) 
MA (1) 

0.076 
-0.710 

0.122 
0.084 

-0.163 
-0.875 

0.314 
-0.545 

0.127 
0.089 

-0.172 
-0.885 

0.324 
-0.535 

Cycle 21 (1,1,1) AR(1) 
MA(1) 

0.172 
-0.692 

0.161 
0.122 

-0.144 
-0.932 

0.487 
-0.452 

0.152 
0.111 

-0.125 
-0.910 

0.469 
0.469 

Cycle 22 (0,1,1) MA(1) -0.620 0.066 -0.749 -0.491 0.073 -0.763 -0.477 
Cycle 23 (0,1,1) MA(1) -0.630 0.062 -0.751 -0.509 0.06 -0.755 -0.506 
Cycle(18-23) (1,0,1) AR(1) 

MA(1) 
0.977 
-0.546 

0.008 
0.034 

0.961 
-0.613 

0.994 
-0.479 

0.008 
0.033 

0.961 
-0.610 

0.993 
-0.482 

  (P: Parameter. HSE: Hessian Standard Error, LD: Lower Bound, UB: Upper Bound, ASE:  
Asympt: Standard Error)  

 

The Table showed the Hessian standard error and asymptotic standard error is 
slightly changed (ignorable) as well as in the confidence interval. It means the 
fitness of the model.  
 

CONCLUSION 
This study concludes the settlement of the six Coronal FeIV530.03λ data set cycle's from 
1944 to 2008. As a conclusion, we can say that the selected stochastic model on cycle 
18,22,23 is an ARIMA (0,1,1) and having ordered 1 Moving Average (MA)  model while 
cycle 20 and cycle 21 has settled on same ARIMA (1,1,1) model except cycle 19 settled on 
ARIMA (2,1,0) and having ordered 2 Autoregressive (AR) model. All cycle’s settled on 
linear differencing trend and complete green line Corona cycle settled on ARIMA (1, 0, 1) 
ARMA model. As mostly natural phenomena’s are non-stationary and they can be best 
fitted with the stochastic model. However, the ARIMA models are being selected for this 
astronomical data and variables for similar cycles. The study may useful to understand 
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the stochastic behavior of CME in future. The work done in this research paper can also 
be established for other emission line Corona (like red line corona) data by fitting the 
same stochastic models. For providing the Coronal index monthly data the World Data 
Center (WDC) and NOAA are acknowledged.  
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