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ABSTRACT 
Let p be an odd prime number, and α  be a solution of an irreducible quadratic equation  
over the rationals Q. In Mushtaq study, the behavior of orbits of a quadratic irrational in a quadratic field 

2x ax b 0+ + =

( )Q α  by the special linear transformation group ( )SL 2, Z  modulo 1 0 1 0
,

0 1 0 1
⎧ ⎫−⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎩ ⎭

 is investigated, 

where; Z denotes the ring of rational integers (Mushtaq, 1988). In this study, the above group is denoted 
by , presented as the projective special linear transformation group. Let (PSL 2, Z) α  be a root of quadratic 

equation (mod p), then we shall introduce the orbit of the (irrational) element  in a finite 
field 

2x x 1− − ≡ 0 α
[ ]pF α  by , where F  equal to Z / . ( pPSL 2, F ) p pZ

INTRODUCTION 
 
Let p be an odd prime number and  be the 

finite field of p elements{
pF

}0, 1, p 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − . 

In this case, an element j in the field  and 

the representative number 
pF

( )j 0 j p 1≤ ≤ −  in 

a class ( ){ }a Z;a j mod p∈ ≡  in the 

residue class field  modulo p, where 
Z denotes the ring of rational integers. 

Z /pZ

(Q d )  be a real quadratic number field 

over the rationals Q with non-square integer 
d 2≥ .  
 
In this article, we investigate an analogue in 
the quadratic extension of the finite field  
to a result on the orbits of quadratic 
irrationals in a global field 

pF

(Q d ) (Mushtaq, 1988). 

Mushtaq (1988) showed Fig. modulo 13, 
where the diagram is one orbit of length 13  
 
 
 
 

 
in the disjoint orbit decomposition for the 
quadratic extension  over the prime 

field  acting on the modular 

group

( )13F α

13F

( )13SL 2, F . The present study 
presents another orbit of length 156 given in 
theorem 2. 
 
In the figure below, two points 5, 8 are fixed 
by X, and two points 4,10 by Y in 

( )13SL 2, F , where  and 
0 1

X
1 0

−⎛ ⎞
= ⎜
⎝ ⎠

⎟

1 1
Y

1 0
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.  

 
To classify the finite field  according 
to the number of orbits in the field, where 

( )pF α
α  

is a root of a quadratic 
equation 2x ax b 0+ + = ; this study uses 
Quadratic Reciprocity Law to deal with the 
above mentioned problem. 
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RESULTS AND DISCUSSION 
 
Two cases of odd prime numbers were 
considered, the details of as follows: 
 
Case No. 1: . ( )p 1, 4 mod 5≡
Let D be the discriminant of the quadratic 
equation . Using the 
first supplementary and quadratic reciprocity 
law, we have 

( ) 2f x x x 1 0= − − =

D 5 p 1 1.
p p 5 5

⎛ ⎞ ⎛ ⎞ ±⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

The equation  is decomposed in 

the linear factors in  
( )f x 0=

pF

( ) ( )( )f x x a x a= − − ,  

where 

+ +
= =

−
=

1 D 1 ca ,
2 2

1 ca
2

.  

The field  

coincides with F  namely in the case 

ofp 1 , and the field extension 

 over F  does not occur.  

( )p pF s t; s,tα = α + ∈F
,

), 4 mod 5≡

)

p

(
( )pF α p

 
Let  be the multiplicative group in F , 
the special linear transformation group 

, is generated by 

x
pF p

( pSL 2, F

0 1
X

1 0
−⎛ ⎞

= ⎜
⎝ ⎠

⎟  and 
1 1

Y
1 0

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

modulo 
⎧ ⎫−⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎩ ⎭

1 0 1 0
,

0 1 0 1
in  

Mushtaq (1988). 
 
Using the two equations  

1 0 1
X

1 1 0 1
ω − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ω⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

ω

1

 and 

1 1 1
Y

1 1 0
ω ω− − ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ω⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 for 

( )Qω∈ α , we identify a vector ⎜  and 

the ratio 

β⎛ ⎞
⎟γ⎝ ⎠

β
γ

 for elements β γ . ( )p, F∈ α

Hence ( )S β  means  for any 

transformation

S
1
β⎛ ⎞
⎜ ⎟
⎝ ⎠

( )pS SL 2, F∈ . Then  

By 
( )

( )

−⎛ ⎞ω = = ω⎜ ⎟ω⎝ ⎠
ω− −⎛ ⎞ω = =⎜ ⎟ω ω−⎝ ⎠

2

2

1X X ,

1 1Y Y
1

  and 

( )3 1Y Y
1

−⎛ ⎞ω = ⎜ ⎟ω−⎝ ⎠
= ω . Hence the order 

of X and Y is 2 and 3 respectively. 
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As  

( )2 1 1XY XY X 1
1

ω− −⎛ ⎞ ⎛ ⎞ω = = = ω−⎜ ⎟ ⎜ ⎟ω ω−⎝ ⎠ ⎝ ⎠
Hence, 

 
( ) ( ) ( ) ( )

12 2 1XY Y X YX 1
− − −ω = ω = ω = ω+

Then it follows that 
⎯⎯⎯→ ⎯⎯⎯→ ⋅⋅ ⋅ ⋅

⋅ ⋅ ⋅⎯⎯⎯→ − ⎯⎯⎯→ ⎯⎯⎯→

YX YX

YX YX YX

1 2 3
p 1 0 1

. 

 
Therefore, in the case of , 
we get a single orbit by the action of 

. 

( )p 1, 4 mod 5≡

( )pPSL 2, F
 
Case No. 2: . ( )p 2, 3 mod 5≡

For any prime , the 

discriminant D  is not square in .  
(p 2, 3 mod 5≡ )

5= pF
 
Thus the field 

( ) ( ){ }p pF s t; s, t Fα = α + ∈ α   

is the quadratic extension over . To 
determine the orbits by the action of 

, we proceed as follows: 

pF

( p.PSL 2, F )
i). For any element a  of , and 
taking the parallel transformation YX, the 
closed circuit 

pF

⎯⎯⎯→ + ⎯⎯⎯→⋅⋅ ⋅

⋅ ⋅ ⋅⎯⎯⎯→ − ⎯⎯⎯→

YX YX

YX YX

a a 1
a 1 a

 

makes an orbit. 
ii). Next, assume that a rational element 

 and an irrational pa F∈ ( )p pF \β∈ α F

2, F

 
belong to the same orbit. Then there exists a 

transformation  

such that 

( )p

s t
S SL

u v
⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

( )S a = β  

for , we have 

 for

pb c, b 0,c Fβ = α + ≠ ∈

bβ = α + c p
sa t F
ua v

+
β = , 

however

∈
+

pb c Fα + ∉ , which is a 
contradiction.  
iii). Finally, we show that any two 
irrationals β  and  belong to the same 
orbit. For two irrationals β =  and 

γ
b cα +

( )pd f Fγ = α + ∈ α ; 

pb 0, c, d 0,f F≠ ≠ ∈ , it shows that there 

exists ( )pS SL 2, F∈  such that ( )S .  β = γ
Taking the parallel transformation 

( ) 12XY YX : 1
−
= β β +a  denoted by Z. 

Since ( )hZ g− δ = α  for , put gδ = α + h

( )S b dα = α . We obtain  iff ( )S b dα = α

( ) 1S b−′ dα = α ⎟

L 2, F

 for  and 

.  

s t
S

u v
⎛ ⎞

= ⎜
⎝ ⎠

( )
1 1

p
b sb b tS S
ub v

− −⎛ ⎞
′ = ∈⎜ ⎟

⎝ ⎠
Now it is enough to show that 

( ) s tS d
u v
α +

α = = α
α +

 with sv  

for a suitable transformation S, namely 

tu 1− =

( )( )
( )( )

( ) ( )
( )

( )

α + α +

α + α +

− + α + − α +
=

− + +

α − + +
= = α

2 2

s t u v

u v u v

su 1 su tu 1 tv
u 1 uv v

su tu tv d
g u, v

  

with ( ) 2 2g u, v u uv v= − + + .  
 
For 1

0d d−=  we seek for a rational solution 

{ }u, v  in F  such that g up ( ) 0, v d= , 
which implies that 

( )2 2
0v uv u d 0+ − + = .  

 
Let ( )2 2 2

v 0D u 4 u d 5u 4d= + + = + 0  be 

the discriminant of the above quadratic 
equation on v, then 
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iii)0. If  is a square  in , then we 
find a solution 

0d 2
0e pF

{ } { }1
0 0s,t, u, v e , 0, 0, e−= . 

 
iii)1. We assume that  is not square 

free in  for  is not 
square free. Denoting a generator of the 
multiplicative group , namely a primitive 
root modulo p by r.  

0d

pF ( )≡p 2, 3 mod 5 ,5

x
pF

 
By our assumption,  is not a square in 

, assuming the discriminant 

 is not a square for any 

0d
x
pF

2
vD 5u 4d= + 0

j x
pu r F= ∈ , we obtained 

.  2a 1 2 j 2d 1 2kj 1r r r r+ ++ = +

+

)
)

2j 2 mod p 1≡ −l

 
If , namely 

, then 

, hence 

, 

2kj 1 2k 1r r+ = l

(j2k 1 2k 1 mod p 1+ ≡ + −l

(2r 2j r mod p≡ l

( ) j = l  holds for 

p 30 j
2
−

≤ − ≤l .  

For 
p 3m 0 m

2
−⎛ ⎞≤ ≤⎜

⎝ ⎠
⎟

+ 0+

, we have 

, namely 
, hence r r

m2k 1 2d 1r r+ +=
2a 1 2m 2d 1 2d 1r r r r+ ++ = 2a 1 2m = , 

which is a contradiction.  
 

There exists 
p 3j 0 j

2
−⎛ ≤ ≤⎜

⎝ ⎠
⎞
⎟

2kj4d r+ =

 such that 

 and 5u , we obtain iu r= 2
0

kj
vD r= .  

 
Finally, we determine the 

transformation , with 
s t

S
u v
⎛ ⎞

= ⎜
⎝ ⎠

−

− +
= =

= + = ∈

0 0
0 v

2 1 2
v 0 0 0

u ev , e D
2

D 5u 4d e ,e Fp

,
 and 

0sv tu 1− = .  
 
If  or v0u x

0 pF∈ , there exists a solution 

{ } { }1
0 0 0s, t, u, v 0, u , u , v−= −  or 

{ }1
0 0v , 0, u , v−

0

0

 with . In the 

case, if u v

sv tu 1− =

0 0 = , then 00 e0 +
=

2
=

0

, 

hence by 0e = , and by 5.0 , 

we get d d
04 d 0+ ⋅ =

0−1
0 = = , which is a 

contradiction.  
 
Then by the transformation  

 to ( )1
0d su tu tvZ
−− − + + ( )S α , it was obtained 

( )ZS dα = α , namely  and d  belongs 
to the same orbit. Therefore the following 
theorem was obtained. 

α α

 
Theorem. Let p be an odd prime and 
α  be a solution of a quadratic 
equation 2x x 1 0− − = . Let F  be the 

field 

( )p α

{ }ps t; s, t Fα + ∈  over the finite 

prime field { }pF 0, 1, p 1= ⋅ ⋅ ⋅ − , then: 
 
(1) For ( )p 1, 4 mod 5≡  we have 

( )p pF Fα =  and F  is occupied by 
the single orbit of the length p by 
the action of PSL ; 

p

( )2, Z
00 1 p 1→ → ⋅⋅ ⋅ → − → . 

(2) For ( )p 2, 3 mod 5≡  we have the 

quadratic extension F  over F  

and 

( )p α p

( )pF α  is separated into two 

disjoint orbits, namely one is F  of 
the length p; 

p

⎟

0 v
v

u D
v , D

2
− +

= = 0e , where  0 1 p 1 0→ → ⋅⋅ ⋅ → − →  
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and the other  of the length 

 by the action of PSL the 

details of these are presented in the diagram 
below: 

( )p pF \α F

)2, F ;2p p− ( p

 

( ) ( ) ( )

α → α+ → ⋅⋅⋅ → α+ −
↓

α ← α+ ← ⋅⋅⋅ ← α+ −
↓
α → α+ → ⋅⋅⋅ → α+ −

↓
⋅ ← ⋅⋅⋅ ← ⋅⋅⋅ ← ⋅
↓
⋅ → ⋅⋅⋅ → ⋅⋅⋅ → ⋅
− α ← − α+ ← ⋅⋅⋅ ← − α+ −
↓
α

1 p

2 2 1 2 p

3 3 1 3 p

p 1 p 1 1 p 1 p 1

.

1

1

1
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