ORBIT OF QUADRATIC IRRATIONALS MODULO P BY THE MODULAR GROUP

Shin-Ichi Katayama¹, Toru Nakahara², Syed Inayat Ali Shah³, Mohammad Naeem Khalid³ and Sareer Badshah³

¹ITokushima University, Japan. ²Saga University, Japan. ³Islamia College University, Peshawar (N.W.F.P) Pakistan.

ABSTRACT

Let p be an odd prime number, and α be a solution of an irreducible quadratic equation $x^2 + ax + b = 0$ over the rationals Q. In Mushtaq study, the behavior of orbits of a quadratic irrational in a quadratic field $Q(\alpha)$ by the special linear transformation group $SL(2, Z) \mod \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ is investigated, where; Z denotes the ring of rational integers (Mushtaq, 1988). In this study, the above group is denoted by PSL(2, Z), presented as the projective special linear transformation group. Let α be a root of quadratic equation $x^2 - x - 1 \equiv 0 \pmod{p}$, then we shall introduce the orbit of the (irrational) element α in a finite

field $F_{p}\left[\alpha\right]$ by $PSL\left(2,F_{p}\right),$ where F_{p} equal to Z/pZ .

INTRODUCTION

Let p be an odd prime number and F_p be the finite field of p elements $\{0, 1, \cdots \cdots p-1\}$. In this case, an element j in the field F_p and the representative number $j(0 \leq j \leq p-1)$ in a class $\{a \in Z; a \equiv j (mod p)\}$ in the residue class field Z/pZ modulo p, where Z denotes the ring of rational integers. $Q\left(\sqrt{d}\right)$ be a real quadratic number field over the rationals Q with non-square integer $d \geq 2$.

In this article, we investigate an analogue in the quadratic extension of the finite field F_p to a result on the orbits of quadratic irrationals in a global field $Q(\sqrt{d})$ (Mushtaq, 1988).

Mushtaq (1988) showed Fig. modulo 13, where the diagram is one orbit of length 13

in the disjoint orbit decomposition for the quadratic extension $F_{13}(\alpha)$ over the prime field F_{13} acting on the modular group $SL(2, F_{13})$. The present study presents another orbit of length 156 given in theorem 2.

In the figure below, two points 5, 8 are fixed
by X, and two points 4,10 by Y in
$$SL(2, F_{13})$$
, where $X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and
 $Y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

To classify the finite field $F_p(\alpha)$ according to the number of orbits in the field, where α is a root of a quadratic equation $x^2 + ax + b = 0$; this study uses Quadratic Reciprocity Law to deal with the above mentioned problem.

RESULTS AND DISCUSSION

Two cases of odd prime numbers were considered, the details of as follows:

Case No. 1: $p \equiv 1, 4 \pmod{5}$.

Let D be the discriminant of the quadratic equation $f(x) = x^2 - x - 1 = 0$. Using the first supplementary and quadratic reciprocity law, we have

$$\left(\frac{\mathsf{D}}{\mathsf{p}}\right) = \left(\frac{\mathsf{5}}{\mathsf{p}}\right) = \left(\frac{\mathsf{p}}{\mathsf{5}}\right) = \left(\frac{\pm \mathsf{1}}{\mathsf{5}}\right) = \mathsf{1}.$$

The equation f(x) = 0 is decomposed in the linear factors in F_p

$$f(x) = (x-a)(x-\overline{a}),$$

where
$$a = \frac{1+\sqrt{D}}{2} = \frac{1+c}{2},$$
$$\overline{a} = \frac{1-c}{2}$$

 $\begin{array}{ll} \text{The} & \text{field} & F_p\left(\alpha\right) = s\alpha + t; \ s,t \in F_p \\ \text{coincides with} & F_p, \ \text{namely in the case} \\ \text{of} \ p \equiv 1, \ 4 \left(mod \ 5\right), \ \text{and the field extension} \\ F_p\left(\alpha\right) \ \text{over} \ F_p \ \text{does not occur.} \end{array}$

Let F_p^x be the multiplicative group in F_p , the special linear transformation group $SL(2, F_p)$, is generated by $X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } Y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ modulo $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ in Mushtaq (1988).

Using the two equations $X\begin{pmatrix} \omega \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ \omega \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega \\ 1 \end{pmatrix}$ and $Y\begin{pmatrix} \omega \\ 1 \end{pmatrix} = \begin{pmatrix} \omega -1 \\ \omega \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega \\ 1 \end{pmatrix}$ for $\omega \in Q(\alpha)$, we identify a vector $\begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ and the ratio $\frac{\beta}{\gamma}$ for elements $\beta, \gamma \in F_p(\alpha)$. Hence $S(\beta)$ means $S\begin{pmatrix} \beta \\ 1 \end{pmatrix}$ for any transformation $S \in SL(2, F_p)$. Then $X^2(\omega) = X\begin{pmatrix} -1 \\ \omega \end{pmatrix} = \omega$, By $Y^2(\omega) = Y\begin{pmatrix} \frac{\omega -1}{\omega} \end{pmatrix} = \frac{-1}{\omega - 1}$ and $Y^3(\omega) = Y\begin{pmatrix} -1 \\ \omega -1 \end{pmatrix} = \omega$. Hence the order

of X and Y is 2 and 3 respectively.

As

$$XY^{2}(\omega) = XY\left(\frac{\omega-1}{\omega}\right) = X\left(\frac{-1}{\omega-1}\right) = \omega-1$$

Hence,

$$(XY^2)^{-1}(\omega) = Y^{-2}X^{-1}(\omega) = YX(\omega) = \omega + 1$$

Then it follows that

$$1 \xrightarrow{YX} 2 \xrightarrow{YX} 3 \cdots$$
$$\cdots \xrightarrow{YX} p - 1 \xrightarrow{YX} 0 \xrightarrow{YX} 1$$

Therefore, in the case of $p \equiv 1, 4 \pmod{5}$, we get a single orbit by the action of $PSL(2, F_p)$.

Case No. 2: $p \equiv 2$, $3 \pmod{5}$. For any prime $p \equiv 2$, $3 \pmod{5}$, the discriminant D = 5 is not square in F_p .

Thus the field

 $F_{p}\left(\alpha\right) = \left\{s\alpha + t; \, s, \, t \in F_{p}\left(\alpha\right)\right\}$

is the quadratic extension over F_p . To determine the orbits by the action of $PSL(2, F_{p.})$, we proceed as follows:

i). For any element a of $F_{\rm p}$, and taking the parallel transformation YX, the closed circuit

$$a \xrightarrow{YX} a + 1 \xrightarrow{YX} \cdots$$

 $\cdots \xrightarrow{YX} a - 1 \xrightarrow{YX} a$

makes an orbit.

ii). Next, assume that a rational element $a \in F_p$ and an irrational $\beta \in F_p(\alpha) \setminus F_p$ belong to the same orbit. Then there exists a transformation $S = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in SL(2, F_p)$ such that $S(a) = \beta$

 $\label{eq:bar} \mathrm{for}\,\beta = b\alpha + c,\, b \neq 0, c \in F_{\!_p}\,, \quad \mathrm{we} \quad \mathrm{have}$

$$\beta = b\alpha + c$$
 for $\beta = \frac{sa + t}{ua + v} \in F_p$,

however $b\alpha + c \notin F_p$, which is a contradiction.

iii). Finally, we show that any two irrationals β and γ belong to the same orbit. For two irrationals $\beta = b\alpha + c$ and $\gamma = \mathbf{d}\alpha + \mathbf{f} \in \mathbf{F}_{\mathbf{p}}(\alpha);$ $b \neq 0$, c, $d \neq 0$, $f \in F_n$, it shows that there exists $S \in SL(2, F_p)$ such that $S(\beta) = \gamma$. the parallel Taking transformation $(XY^2)^{-1} = YX : \beta \mapsto \beta + 1$ denoted by Z. Since $Z^{-h}(\delta) = g\alpha$ for $\delta = g\alpha + h$, put $S(b\alpha) = d\alpha$. We obtain $S(b\alpha) = d\alpha$ iff $S'(\alpha) = b^{-1}d\alpha$ for $S = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$ and $\mathbf{S}' = \begin{pmatrix} \mathbf{b}^{-1}\mathbf{s}\mathbf{b} & \mathbf{b}^{-1}\mathbf{t} \\ \mathbf{u}\mathbf{b} & \mathbf{v} \end{pmatrix} \in \mathbf{SL}(\mathbf{2}, \mathbf{F}_{\mathbf{p}}).$ Now it is enough to show that $S(\alpha) = \frac{s\alpha + t}{u\alpha + v} = d\alpha$ with sv - tu = 1for a suitable transformation S, namely

$$\frac{(s\alpha + t)(u\overline{\alpha} + v)}{(u\alpha + v)(u\overline{\alpha} + v)}$$

=
$$\frac{su(-1) + su\alpha + tu(1-\alpha) + tv}{u^{2}(-1) + uv + v^{2}}$$

=
$$\frac{\alpha - su + tu + tv}{g(u, v)} = d\alpha$$

with $g(u, v) = -u^{2} + uv + v^{2}$.

For $d_0 = d^{-1}$ we seek for a rational solution $\{u, v\}$ in F_p such that $g(u, v) = d_0$, which implies that $v^2 + uv - (u^2 + d_0) = 0$.

Let $D_v = u^2 + 4(u^2 + d_0) = 5u^2 + 4d_0$ be the discriminant of the above quadratic equation on v, then

iii)₁. We assume that d_0 is not square free in F_p for $p \equiv 2, 3 \pmod{5}, 5$ is not square free. Denoting a generator of the multiplicative group F_p^x , namely a primitive root modulo p by r.

By our assumption, d_0 is not a square in F_p^x , assuming the discriminant $D_v = 5u^2 + 4d_0$ is not a square for any $u = r^j \in F_p^x$, we obtained $r^{2a+1}r^{2j} + r^{2d+1} = r^{2kj+1}$.

 $\begin{array}{ll} \mbox{If} & r^{2kj+1} = r^{2k\ell+1}, & \mbox{namely} \\ 2k_j + 1 \equiv 2k_\ell + 1 \big(mod \, p - 1 \big), & \mbox{then} \\ r \ 2j \equiv r^{2\ell} \big(mod \, p \big), & \mbox{hence} \\ 2j \equiv 2\ell \big(mod \, p - 1 \big), & \mbox{j} = \ell & \mbox{holds} & \mbox{for} \\ 0 \leq j - \ell \leq \frac{p-3}{2}. \\ \mbox{For} & m \bigg(0 \leq m \leq \frac{p-3}{2} \bigg), & \mbox{we} & \mbox{have} \\ r^{2k_m+1} = r^{2d+1}, & \mbox{namely} \\ r^{2a+1}r^{2m} + r^{2d+1} = r^{2d+1}, & \mbox{hence} & r^{2a+1}r^{2m} = 0, \\ \mbox{which is a contradiction.} \end{array}$

There exists $j\left(0 \le j \le \frac{p-3}{2}\right)$ such that $u = r^{i}$ and $5u^{2} + 4d_{0} = r^{2kj}$, we obtain $\sqrt{D_{v}} = r^{kj}$.

Finally, we determine the transformation $S = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$, with

$$v = \frac{-u_0 + \sqrt{D_v}}{2}, \sqrt{D_v} = e_0, \text{ where }$$

$$\begin{split} v &= \frac{-u_0 + e_0}{2}, \ e_0 = \sqrt{D_v}, \\ D_v &= 5u_0^2 + 4d^{-1} = e_0^2, e_0 \in F_p \\ sv - tu_0 &= 1. \end{split} \label{eq:velocity}$$
 and

If U_0 or $V_0 \in F_p^x$, there exists a solution $\{s, t, u, v\} = \{0, -u_0^{-1}, u_0, v_0\}$ or $\{v_0^{-1}, 0, u_0, v_0\}$ with sv - tu = 1. In the case, if $U_0 = v_0 = 0$, then $0 = \frac{0 + e_0}{2}$, hence by $e_0 = 0$, and by $5.0 + 4 \cdot d_0 = 0$, we get $d_0 = d^{-1} = 0$, which is a contradiction.

Then by the transformation $Z^{-d_0^{-1}(-su+tu+tv)}$ to $S(\alpha)$, it was obtained $ZS(\alpha) = d\alpha$, namely α and $d\alpha$ belongs to the same orbit. Therefore the following theorem was obtained.

- (1) For $p \equiv 1, 4 \pmod{5}$ we have $F_p(\alpha) = F_p$ and F_p is occupied by the single orbit of the length p by the action of PSL(2, Z); $0 \rightarrow 1 \rightarrow \cdots \rightarrow p - 1 \rightarrow 0$.
- (2) For $p \equiv 2, 3 \pmod{5}$ we have the quadratic extension $F_p(\alpha)$ over F_p and $F_p(\alpha)$ is separated into two disjoint orbits, namely one is F_p of the length p;

 $0 \rightarrow 1 \rightarrow \cdots \rightarrow p - 1 \rightarrow 0$

and the other $F_p(\alpha) \setminus F_p$ of the length $p^2 - p$ by the action of $PSL(2, F_p)$; the details of these are presented in the diagram below:

α	\rightarrow	α +1	\rightarrow	•••	\rightarrow	α+p-1
2 α	←	$2\alpha + 1$	←		←	2 α+p-1
šά	\rightarrow	$3\alpha + 1$	\rightarrow		\rightarrow	$3\alpha + p - 1$
	←		←		←	↓ ·
↓ •	\rightarrow	•••	\rightarrow		\rightarrow	•
(p−1)α ↓	←	(p-1)α+1	←	•••	←	(p-1)α+p-1
α.						

REFERENCES

Kuroki A (2007). On quadratic reciprocity law. (Bachelor Thesis), Tokushima University, Japan.

Mushtaq Q (1988). Modular group acting on real quadratic fields. Bulletin Australian Mathematical Society. (37):303-309.

Takagi T (1903). A simple proof of the quadratic reciprocity law for quadratic residues. Proc. Phys. –Math. Soc. Japan. Ser II, (2):74-78.

Tomonou D (2006). Modulser group which acts on real quadratic fields (Master Thesis). Saga University, Japan.