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ABSTRACT  

In the software project, to estimate the duration of software processes is frequently a 

complex problem. Only 39 percent projects are finished on time relative to the original 

schedule. Many research efforts had been developed to estimate the duration, but no single 

model could be used which was suitable for this problem. It is a challenging task to 

recognize a reliable model for estimation. Due to wrong selection for model or assigning 

weight, a software system faced many problems which lead to cost, time, effort and 

schedule overrun. This research proposed a procedure to estimate the duration of software 

projects by applying machine learning technique. The Bayesian regularization back 

propagation (BR) and Levenberg–Marquardt (LM) training algorithms are used within 

Feed forward neural network and Radial base neural network and got results of both 

models. This approach is applied to the data which is taken from the literature review. 

After training of the models consuming both training algorithms, it is concluded that BR 

offers superior results than LM. 

 

Keyword: Duration of Software Project, Artificial Neural Network, Feed Forward 

Neural Network, Bayesian regularization back propagation 

 

INTRODUCTION 

Software development is a lengthy procedure which comprises numeral development 

processes and engineering activities. So, ambiguous time period is required to succeed all 

necessities. Only 39 percent projects are able on time relative to imaginative schedule. 

Software processes are interleaved arrangements of managerial, technical and cooperative 

activities with goal of identifying, designing, executing and testing the system (Pendharkar, 

2010). The term development refers to three standard stages: design, implementation and 

testing maintenance deal with expose anomalies, changing operating environment and 

additional user requirements which demand after delivery of software project (Czerwonka, 

Nagappan, Schulte & Murphy, 2013). When the software necessities have been quantified, 

the following categories of predictions must be estimated: how many person-hours are 

required to develop or retain a software project, how much time is required to develop a 

software project and duration and how much cost is required for software project which 

based on resources like tools and people (Gefen, Gefen & Carmel, 2016). Predicting time 

is vital for software development organizations to manage budget and workload.  
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Resources requirements can be reformed throughout the implementation of the software 

project and software growth progression dynamically fluctuates. If project interruptions 

happen, then it is mandatory to grip this obstacle by recommending an innovative plan. 

The models which used for prediction must be intelligible and truthful (Ali & Lai, 2016). 

The techniques and methods used for predicting purpose based on expert judgment, 

supporting vector machine, multiple linear regressions, Genetic algorithm, COCOMO 

model and artificial neural network. The neural networks are generally industrialized to 

estimate and expect the practical and non-practical appearances of software like software 

delay prediction, problem detection and daily activity prediction (Wang et al., 2016) 

(Khashei & Bijari, 2010). The contribution of this research is to use feed forward neural 

network and radial base neural network to estimate the duration of software development 

project. Bayesian regularization back propagation (BR) and Levenberg–Marquardt (LM) 

training algorithms are used to train both models. After comparing performances of both 

approaches through different statistical tactics it is investigated that BR provide superior 

results than LM. 

 

LITERATURE REVIEW  

To build a model which grounded around the requirement history of software development 

lifecycle and captured essential subtleties of its progress. The logistic regression algorithm 

had been used with perceived data configuration and inspected features to design the 

model. This approach leads to satisfied and concrete outcomes (Cerpa, Bardeen, Astudillo 

& Verner, 2016). This study supposed autonomous necessities and inherent to the only one 

case study which are the limitations. Some proposed classifiers to predict the outcomes of 

software projects. Different classifiers were trained to check the performance and conclude 

that four classifiers (Random Forest, Naive Bayes, Support Vector Machine and Multilayer 

Perceptrons) perform well. This study had been delivered an online platform by using 

Random Forest classifier to determine the outcomes of software projects. Some researchers 

investigates use of Fuzzy Analogy and Classical Analogy with missing data techniques to 

estimate software development effort (Idri, Abnane & Abran, 2016). The results advocate 

that Fuzzy Analogy produced more precise performance than a Classical Analogy to 

estimate effort of software. Furthermore, this study also preferred to use KNN than deletion 

or toleration because both techniques provide harmful influence on prediction accuracy.  

 

Bisi and Goyal (2016) designed architecture of ANN to predict the software development 

effort under dependable schedule and financial plan. Logarithmic activation function was 

used as a supplementary input layer and particle swarm optimization (PSO) was used to 

train the input values. To condense the dimension of input features principal component 

analysis (PCA) were applied and in hidden layer to optimize the performance of hidden 

neurons Genetic Algorithm was applied. The statistical terms MMRE and PRED (25) 
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conclude that the recommended methodology delivers better results by using, NASA, 

Albrecht, Desharnais and COCOMO datasets. Gefen (2016) described the Crowdsourcing 

software development markets (CSMs) elaborate the importance of obtaining information 

in software development process. At highest degree these markets act as Contract Theory. 

Their unique size showed possibly unanticipated features of the markets. The limitation of 

this research is that the data already exist, so novel paradigms of concern cannot be added 

to it. Lopez and Abran (2015) proposed a radial based function neural network (RBFNN) 

and multilayer feed forward neural network (MLP) to predict the duration time of new 

software projects when the team size of developers and functions size are used as the 

autonomous variables. This research compared with seven other studies and concludes that 

the proposed technique was statically better than statistical regression method which used 

to predict the duration of software. 

 

Lopez (2015) used machine learning techniques to solve precision issues of software 

prediction. Radial Basis Function Neural Network (RBFNN) was compared with 

feedforward multilayer perceptron (MLP), simple linear regression (SLR) model and 

general regression neural network (GRNN). Hypothesis test concludes that accurateness 

gained from RBFNN is statistically better than the SLR, MLP and GRNN when function 

points are used as the independent variable. Absolute Residuals and Friedman statistical 

test were used to evaluate the accuracy of the proposed models. It was presented a new 

method with a combination of analytical programming and use case points method to 

improve the estimation process of systems. Analytical programming used self-organizing 

migration algorithm which is very delicate to involve constraints (Urbanek, Prokopová, 

Silhavy & Sehnálek, 2014). The advantage of this resolution is that, this method had no 

weight because analytical programming generates weights as coefficients in equations and 

provides best results to predict the effort. The disadvantage of this method is that the 

accuracy of Use Case Point method quiet based on User familiarity. 

 

Ozcan and Figlali (2014) attempted to launch an intelligent system to estimate the entire 

cost of stamping dies. The performance of ANN, multiple regression analysis and 

conventional approach were examined to estimate the cost of stamping dies. This study 

exposes that the ANN system performed better for cost estimation as comparatively than 

linear regression analysis model and conventional approaches. This ANN model was 

proficient to dropping cost associated uncertainties. Lopez (2013) proposed a feedforward 

neural network (FFNN) for forecasting the period of new software development projects. 

FFNN exposed statistically enhanced results than a statistical regression (SR) model when 

function points are used as the independent variable. Mean Magnitude of Relative Error 

(MMRE) and an ANOVA statistical investigation test were used to evaluate the accuracy 

of these two models. At the 90% confidence level FFN produced better outputs than the 
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SR model to predicting the duration of new software development projects. 

 

Numerous suggested an approach to solve the software development cost estimation 

(SDCE) problem; this paper proposes an evolutionary morphological approach. The 

proposed approach uses the dilation erosion perceptron (DEP) with a process, called DEP 

(MGA), using a modified genetic algorithm (Araujo, Oliveira, Soares & Meira, 2012). A 

better and more stable global performance of the proposed model, having around 1.86% of 

averages, improvement regarding the MRLHD, as well as having around 0.64% of average 

improvement regarding the DEP (BP) is indicated by experimental investigations. 

Halkjelsvik and Jørgensen (2012) deliver an integrated literature review to forecast the 

performance of time, which grounded on judgment-based estimates. The main contribution 

of this research is to condense the imaginable and associating factors through which time 

forecasting disturbed. This research also compared verified or self-conveyed actual time in 

the exactness of the time estimates that concern confidence of judgments. Some inspects 

the effect of process maturity on software development time by originating a new set of 

“COCOMO II’s PMAT” grade values based on Capability Maturity Model Integration 

(CMMI) (Alyahya, Ahmad & Lee, 2009). Good impression of CMMI maturity procedure 

of software development time was achieved by exhausting Ideal Scale Factor method (ISF). 

 

MATERIAL AND METHODS 

 

Data 

The data is in numeric form and it consists of five inputs and one output value, including 

Programming language experience, Reused code, New and Changed code, Effort, Team 

size and Duration. Duration field is taken as an output value. These independent variables 

are selected according to effort (E) which depends on the percentage of new (NC) and 

Reusable (RC) code with maximum number of people (TS) that work on the project at any 

time. Programming language experience (PLE) is also an important point for the selection 

of the team size. This record is collected from previous study.  

 

Table 1. Sample Data 

PLE RC NC E TS Duration 

24 21 17 65 1 68 

12 33 11 44 1 62 

36 42 10 35 1 53 

14 8 95 131 3 153 

 

Artificial Neural Network (NNs) 

A  neural  network  (NN)  is  a  network motivated  by  biological  nervous  systems and 
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its structure is based on artificial neurons. The purpose of this network is to estimate or 

predict functions; these functions can depend on a large number of factors which use 

numerical values. Each vector is received and observed by neurons with specific 

independent compassion called weight. The inner condition of the neuron is a summation 

of the interior merchandise of the input and the weight vectors, and a mathematical 

assessment called bias. This function which is used to transfer information is called the 

transfer function (Park & Baek, 2008). Naturally the structures of neural networks are in 

the form of layers. Input neurons of first layer send data to the second layer of neurons and 

after updating the weight, data is transferred from second layer to the output layer. 

Activation functions are placed in these layers that convert neuron input weights to output 

activation.  

 

Figure 1. Artificial Neural Network 

 
 

Models 

Feed Forward Neural Network 

A feedforward neural network was the leading and modest kind of artificial neural network. 

In this network, the information transfers simply in single track. The signals between 

neurons always move from the input layer to output layer over hidden nodes. The 

architecture of FFNN consists of one input layer, one hidden layer with a nonlinear 

activation function and one output layer with linear combinations of radial basis functions. 

In neurons the values of weights and bias are adjusted to learn the neural network (Glorot 

& Bengio, 2010). A FFNN consists of two phases: a training phase and an application 

phase. During the training phase input values are prepared and constraints are adjusted to 

improve network performance through learning algorithm. When the training phase is 

finished and accurate performance is achieved, the network starts its phase of application 

for the proposed task. 
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Radial Base Neural Network 

A radial basis neural network uses radial basis functions as activation functions. The 

architecture of RBNN consists of one input layer, one hidden layer with a nonlinear 

activation function and one output layer with linear combinations of radial basis functions 

(Nassif, Azzeh, Capretz & Ho, 2016). In this network the neurons value is achieved by 

adjusting cross product of both bias and weights. To train this network 70% information is 

required and remaining 30% used for testing and validation purpose. During the training 

state, constraints are adjusted until required performance is achieved. It is much easier to 

design and train RBNN than other neural networks. 

 

Algorithm 

Levenberg–Marquardt (LM) algorithm 

The Levenberg-Marquardt algorithm is a very modest and forceful technique for 

approaching a function. It reduces the activation functions over a space of constraints and 

delivers a numerical clarification of the problem. It is suitable for moderate sized problems 

in ANNs (Jazayeri, Jazayeri & Uysal, 2016). This training algorithm consists of three basic 

phases: first training phase trains the network, according to the desired output value, second 

phase validation checked the validity of network and third testing phase test the 

information. The Levenberg-Marquardt is faster than Bayesian regularization back 

propagation algorithm, but it is very penetrating to the preliminary weights of the network. 

 

Bayesian regularization back propagation algorithm 

Bayesian regularization back propagation algorithm used in neural network to absorb 

problems and to guesstimate the operative number of constraints essentially required 

resolving a specific problem. BR modernizes the weights and bias values according to the 

Levenberg-Marquardt optimization. It reduces the arrangement of weights, squared error, 

and provides the correct network (Plumb, Rowe, York & Brown, 2005). Overpriced 

fractious validation can be escaped by exhausting Bayesian regularization. It also 

eliminates the requirement for testing altered numbers of hidden neurons to solve problem. 

This training algorithm consists of two phases: training and testing, and it reduces the cost 

which used in validation phase. Bayesian regularization back propagation slower than 

Levenberg-Marquardt algorithm, but it is useful to solve complex problems. 

 

Training and Testing the Models 

The training, testing and validation procedures of the ANNs are implemented on 360 data 

permutations, each permutation comprising 5 inputs and 1 target output. Feedforward 

neural network used the single layer architecture; the activation function in the hidden layer 

is 10 sigmoid and numbers of neurons are 10. When FFNN was trained through Levenberg-

Marquardt algorithm, it passed through three phases: training, validation and testing. The 



53                                     Khalid et al... An Approach to Estimate 

 

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180 

dividerand function was used to divide the data. This function divides the complete data 

into the following partitions: 70 percent data used for training, 15 percent data used for 

testing and 15 percent for validation shown in figure 2. 
 

 
Figure 2. FFNN using LM   Figure 3. FFNN using BR 

 

The identification method is repeated for production of the FFNN with BR training 

backpropagation algorithm, it passed through two phases: training and testing. The divider 

and function divides the complete data into the following partitions: 70 percent data used 

for training and 30 percent data used for testing shown in figure 3. Radial basis neural 

network also used the single layer architecture. This network used the maximum number 

of neurons are 40 and the number of neurons to add between displays are 5 and goals set 

at 0. 
 

Figure 4. RBNN using LM           Figure 5. RBNN using BR 

 

RBNN also train using both Levenberg-Marquardt and Bayesian regularization back 

propagation algorithms. Levenberg-Marquardt algorithm passed through three phases: 
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training, validation and testing, and Bayesian regularization back propagation algorithm 

passed through two phases: training and testing shown in figure 4 and figure 5. 

 

Modeling Performance Criteria  

In order to evaluate the prediction accuracy of FFNN and RBNN through Levenberg-

Marquardt and Bayesian regularization back propagation training algorithms, and to find 

out which algorithm performs well to estimate the duration of software projects, the norms 

Mean Square Error (MSE) and Coefficient of determination are used. Chi-square test also 

used to check the normality of the dataset.  Mean squared error (MSE) measures the 

average of the squares of the errors that is the difference between the observed and 

predicted value. The values of MSE nearer to zero show good results and it is always 

positive (Franses, 2016). If  is a direction of n forecasts, and  is the direction of 

experimental values according to the inputs of the method which produced the predictions, 

then the MSE can be calculated through Eq:(1): 

 

Eq:(1) 

Coefficient of determination is a number that specifies the percentage of the variation in 

the dependent variable that can estimate from the independent variable. The coefficient of 

determination signifies the percentage of the records that is the closest to the best fit line. 

The answer of Coefficient of determination fall between 0-1 and its maximum value 

represented good results (Chen & Braga, 2016). It is denoted by .  

 

Eq:(2) 

In the measurements, normality tests are used to conclude that the data set is well-

demonstrated by a normal distribution. To check the normality of data sets Chi-square test 

is used. This test is applied to realize the allocations of defining variables fluctuate from 

each other (Liu, Tang & Zhang, 2009). 

 
Eq:(3) 

Equation (3) denote the chi-square test,  shows the observed values and Y shows the 

expected values. This test elaborates the normality checks between observed values and 

expected values. In measurement means a very lesser results from chi square test explain 

that observed data well fit according to expected data and a relationship exist between data 

set.  A very huge results of the chi - square test means that the fitness of the data is not very 

well and there is not a relationship between data. 
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RESULTS AND DISCUSSION 

The regression plots of the FFNN for the training, validation and testing processes are 

displayed in Figure 2 and Figure 3 respectively. Figure 2 demonstrates the performance of 

FFNN using LM and Figure 3 demonstrates the performance of FFNN using BR. The 

regression plots of the RBNN for the training, validation and testing processes are given in 

Figure 4 and Figure 5 respectively. Figure 4 demonstrates the performance of RBNN using 

LM and Figure 5 demonstrates the performance of RBNN using BR. From the figures it is 

prominent that LM consists of three phases to train the models, whereas BR comprise of 

only two phases for this resolution but the performance of both training algorithms are 

approximately same. Table no. 2 shows the presentation of both algorithms over FFNN 

and RBNN.  This table shows the training, testing and validation outcomes, time period 

and the number of epochs which is used to train the models. 

 

Table 2. Performance metrics 

Performance 
metrics 

Feedforword Neural network Radial Base Neural network 

Levenberg-

Marquardt 
(LM) 
algorithm 

Bayesian 

Regularization 
(BR) algorithm 

Levenberg-

Marquardt  
algorithm 

Bayesian 

Regularization 
(BR) algorithm 

Best training 
performance 

65.3233 60.2467 65.7809 56.7057 

Best validation 
performance 

70.6843 0 34.4626 0 

Best testing 
performance 

82.7745 65.0591 85.0380 85.5323 

No. of  training 
epochs  

14 123 15 113 

Best training 

epoch 

8 44 9 109 

Training time 
(in Seconds) 

01 13 10 26 

 

The results of these networks, elaborate that BR used less training and testing performance 

than LM and LM used less epochs and time as compared than BR. But the validation in 

BR is zero. The Less value of performances illustrate better results. To check the 

performances of both algorithms, these two networks are run five times and get results in 

the form of Mean Square Error (MSE) and Coefficient of determination (R2). Table no. 3 

shows the values of both models after applying both algorithms. 

 

Table 3. Statistical Test 

Statistical Test  Feedforword Neural network Radial Base Neural network 

LM BR LM BR 

MSE 63.9202 60.9207 63.1766 59.1262 

63.6700 60.2009 67.3238 61.5580 

73.9866 61.1689 61.3707 61.1453 

66.4048 61.5746 60.9565 62.5065 
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61.1533 60.9045 67.9373 62.3673 

R2 0.85221 0.85883 0.85883 0.86291 

0.85259 0.86479 0.86048 0.85751 

0.85703 0.85829 0.85829 0.85855 

0.86083 0.85727 0.85727 0.85544 

0.85831 0.85888 0.85888 0.85542 

 

The less outcome value of MSE deliberate better results. After training of both models, 

following results are conducted: the average values of MSE provide less value and R2 

provide greater value while using BR.  

Figure 6. MSE of FFNN              Figure 7. MSE of RBNN 

Figure no. 6 reveal the results in MSE to evaluate the performance of both algorithms for 

FFNN and Figure no.7 expose the performance of both algorithms for RBNN. Figure no. 

8 and Figure no. 9 elaborate the R2 values of both models.  

 
    Figure 8. R2 of FFNN                    Figure 9. R2 of RBNN 

 

Chi-squared test is used to check the normality of datasets through p-value. Normality test 

is compulsory to check that the dataset is in formal form or not. Table no. 3 shows the 

normality of the dataset which conducting from both models at 95% confidence interval. 

P-values less than 0.05 shows good results and it's elaborate that dataset is in formal form.  
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Chi-squared test is realistic between the dataset and the results which are obtained after 

applying both algorithms. 

Table 3. Normality Test 

Chi-Square Tests 

Model 
Algorithm 

Value Df P-Value 

FFNN BR 28428.331a 25800 .0005 

LM 28428.331a 25800 .0002 

RBNN BR 28428.331a 25800 .0001 

LM 28428.331a 25800 .0050 

 

The results of Chi-squared test, demonstrate that the relationship between data and results 

is in formal form of both models. The p-values of BR and LM are less than 0.05.  

 

CONCLUSION 

To estimate the duration of a software project is most precious and important part of the 

software development phase. Duration time means the time, which is used to develop a 

software project. Two machine learning models are realistic to estimate the duration time 

by practicing two different training algorithms. FFNN and RBNN both models are trained 

through Levenberg–Marquardt (LM) algorithm which consume three variables (train, test 

and valid) and Bayesian regularization back propagation algorithm which consume only 

two variables (train and test), it avoid validation process. The performances of these 

algorithms are compared through MSE and R2 statistical tool and accomplish that BR 

deliver slightly superior outcomes to estimate the duration of software than LM. BR is 

more preferred for this determination since it avoids the validation procedure which is cost 

effective.   
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