
47

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

AN APPROACH TO ESTIMATE THE DURATION OF SOFTWARE

PROJECT THROUGH MACHINE LEARNING TECHNIQUES

Anam Khalid1, Muhammad Ahsan Latif1 & Muhammad Adnan2

1Department of Computer Science, University of Agriculture, Faisalabad, Pakistan
2IMIS, Department of computer science & information engineering, NCKU, Taiwan

ABSTRACT

In the software project, to estimate the duration of software processes is frequently a

complex problem. Only 39 percent projects are finished on time relative to the original

schedule. Many research efforts had been developed to estimate the duration, but no single

model could be used which was suitable for this problem. It is a challenging task to

recognize a reliable model for estimation. Due to wrong selection for model or assigning

weight, a software system faced many problems which lead to cost, time, effort and

schedule overrun. This research proposed a procedure to estimate the duration of software

projects by applying machine learning technique. The Bayesian regularization back

propagation (BR) and Levenberg–Marquardt (LM) training algorithms are used within

Feed forward neural network and Radial base neural network and got results of both

models. This approach is applied to the data which is taken from the literature review.

After training of the models consuming both training algorithms, it is concluded that BR

offers superior results than LM.

Keyword: Duration of Software Project, Artificial Neural Network, Feed Forward

Neural Network, Bayesian regularization back propagation

INTRODUCTION

Software development is a lengthy procedure which comprises numeral development

processes and engineering activities. So, ambiguous time period is required to succeed all

necessities. Only 39 percent projects are able on time relative to imaginative schedule.

Software processes are interleaved arrangements of managerial, technical and cooperative

activities with goal of identifying, designing, executing and testing the system (Pendharkar,

2010). The term development refers to three standard stages: design, implementation and

testing maintenance deal with expose anomalies, changing operating environment and

additional user requirements which demand after delivery of software project (Czerwonka,

Nagappan, Schulte & Murphy, 2013). When the software necessities have been quantified,

the following categories of predictions must be estimated: how many person-hours are

required to develop or retain a software project, how much time is required to develop a

software project and duration and how much cost is required for software project which

based on resources like tools and people (Gefen, Gefen & Carmel, 2016). Predicting time

is vital for software development organizations to manage budget and workload.

48 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

Resources requirements can be reformed throughout the implementation of the software

project and software growth progression dynamically fluctuates. If project interruptions

happen, then it is mandatory to grip this obstacle by recommending an innovative plan.

The models which used for prediction must be intelligible and truthful (Ali & Lai, 2016).

The techniques and methods used for predicting purpose based on expert judgment,

supporting vector machine, multiple linear regressions, Genetic algorithm, COCOMO

model and artificial neural network. The neural networks are generally industrialized to

estimate and expect the practical and non-practical appearances of software like software

delay prediction, problem detection and daily activity prediction (Wang et al., 2016)

(Khashei & Bijari, 2010). The contribution of this research is to use feed forward neural

network and radial base neural network to estimate the duration of software development

project. Bayesian regularization back propagation (BR) and Levenberg–Marquardt (LM)

training algorithms are used to train both models. After comparing performances of both

approaches through different statistical tactics it is investigated that BR provide superior

results than LM.

LITERATURE REVIEW

To build a model which grounded around the requirement history of software development

lifecycle and captured essential subtleties of its progress. The logistic regression algorithm

had been used with perceived data configuration and inspected features to design the

model. This approach leads to satisfied and concrete outcomes (Cerpa, Bardeen, Astudillo

& Verner, 2016). This study supposed autonomous necessities and inherent to the only one

case study which are the limitations. Some proposed classifiers to predict the outcomes of

software projects. Different classifiers were trained to check the performance and conclude

that four classifiers (Random Forest, Naive Bayes, Support Vector Machine and Multilayer

Perceptrons) perform well. This study had been delivered an online platform by using

Random Forest classifier to determine the outcomes of software projects. Some researchers

investigates use of Fuzzy Analogy and Classical Analogy with missing data techniques to

estimate software development effort (Idri, Abnane & Abran, 2016). The results advocate

that Fuzzy Analogy produced more precise performance than a Classical Analogy to

estimate effort of software. Furthermore, this study also preferred to use KNN than deletion

or toleration because both techniques provide harmful influence on prediction accuracy.

Bisi and Goyal (2016) designed architecture of ANN to predict the software development

effort under dependable schedule and financial plan. Logarithmic activation function was

used as a supplementary input layer and particle swarm optimization (PSO) was used to

train the input values. To condense the dimension of input features principal component

analysis (PCA) were applied and in hidden layer to optimize the performance of hidden

neurons Genetic Algorithm was applied. The statistical terms MMRE and PRED (25)

49 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

conclude that the recommended methodology delivers better results by using, NASA,

Albrecht, Desharnais and COCOMO datasets. Gefen (2016) described the Crowdsourcing

software development markets (CSMs) elaborate the importance of obtaining information

in software development process. At highest degree these markets act as Contract Theory.

Their unique size showed possibly unanticipated features of the markets. The limitation of

this research is that the data already exist, so novel paradigms of concern cannot be added

to it. Lopez and Abran (2015) proposed a radial based function neural network (RBFNN)

and multilayer feed forward neural network (MLP) to predict the duration time of new

software projects when the team size of developers and functions size are used as the

autonomous variables. This research compared with seven other studies and concludes that

the proposed technique was statically better than statistical regression method which used

to predict the duration of software.

Lopez (2015) used machine learning techniques to solve precision issues of software

prediction. Radial Basis Function Neural Network (RBFNN) was compared with

feedforward multilayer perceptron (MLP), simple linear regression (SLR) model and

general regression neural network (GRNN). Hypothesis test concludes that accurateness

gained from RBFNN is statistically better than the SLR, MLP and GRNN when function

points are used as the independent variable. Absolute Residuals and Friedman statistical

test were used to evaluate the accuracy of the proposed models. It was presented a new

method with a combination of analytical programming and use case points method to

improve the estimation process of systems. Analytical programming used self-organizing

migration algorithm which is very delicate to involve constraints (Urbanek, Prokopová,

Silhavy & Sehnálek, 2014). The advantage of this resolution is that, this method had no

weight because analytical programming generates weights as coefficients in equations and

provides best results to predict the effort. The disadvantage of this method is that the

accuracy of Use Case Point method quiet based on User familiarity.

Ozcan and Figlali (2014) attempted to launch an intelligent system to estimate the entire

cost of stamping dies. The performance of ANN, multiple regression analysis and

conventional approach were examined to estimate the cost of stamping dies. This study

exposes that the ANN system performed better for cost estimation as comparatively than

linear regression analysis model and conventional approaches. This ANN model was

proficient to dropping cost associated uncertainties. Lopez (2013) proposed a feedforward

neural network (FFNN) for forecasting the period of new software development projects.

FFNN exposed statistically enhanced results than a statistical regression (SR) model when

function points are used as the independent variable. Mean Magnitude of Relative Error

(MMRE) and an ANOVA statistical investigation test were used to evaluate the accuracy

of these two models. At the 90% confidence level FFN produced better outputs than the

50 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

SR model to predicting the duration of new software development projects.

Numerous suggested an approach to solve the software development cost estimation

(SDCE) problem; this paper proposes an evolutionary morphological approach. The

proposed approach uses the dilation erosion perceptron (DEP) with a process, called DEP

(MGA), using a modified genetic algorithm (Araujo, Oliveira, Soares & Meira, 2012). A

better and more stable global performance of the proposed model, having around 1.86% of

averages, improvement regarding the MRLHD, as well as having around 0.64% of average

improvement regarding the DEP (BP) is indicated by experimental investigations.

Halkjelsvik and Jørgensen (2012) deliver an integrated literature review to forecast the

performance of time, which grounded on judgment-based estimates. The main contribution

of this research is to condense the imaginable and associating factors through which time

forecasting disturbed. This research also compared verified or self-conveyed actual time in

the exactness of the time estimates that concern confidence of judgments. Some inspects

the effect of process maturity on software development time by originating a new set of

“COCOMO II’s PMAT” grade values based on Capability Maturity Model Integration

(CMMI) (Alyahya, Ahmad & Lee, 2009). Good impression of CMMI maturity procedure

of software development time was achieved by exhausting Ideal Scale Factor method (ISF).

MATERIAL AND METHODS

Data

The data is in numeric form and it consists of five inputs and one output value, including

Programming language experience, Reused code, New and Changed code, Effort, Team

size and Duration. Duration field is taken as an output value. These independent variables

are selected according to effort (E) which depends on the percentage of new (NC) and

Reusable (RC) code with maximum number of people (TS) that work on the project at any

time. Programming language experience (PLE) is also an important point for the selection

of the team size. This record is collected from previous study.

Table 1. Sample Data

PLE RC NC E TS Duration

24 21 17 65 1 68

12 33 11 44 1 62

36 42 10 35 1 53

14 8 95 131 3 153

Artificial Neural Network (NNs)

A neural network (NN) is a network motivated by biological nervous systems and

51 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

its structure is based on artificial neurons. The purpose of this network is to estimate or

predict functions; these functions can depend on a large number of factors which use

numerical values. Each vector is received and observed by neurons with specific

independent compassion called weight. The inner condition of the neuron is a summation

of the interior merchandise of the input and the weight vectors, and a mathematical

assessment called bias. This function which is used to transfer information is called the

transfer function (Park & Baek, 2008). Naturally the structures of neural networks are in

the form of layers. Input neurons of first layer send data to the second layer of neurons and

after updating the weight, data is transferred from second layer to the output layer.

Activation functions are placed in these layers that convert neuron input weights to output

activation.

Figure 1. Artificial Neural Network

Models

Feed Forward Neural Network

A feedforward neural network was the leading and modest kind of artificial neural network.

In this network, the information transfers simply in single track. The signals between

neurons always move from the input layer to output layer over hidden nodes. The

architecture of FFNN consists of one input layer, one hidden layer with a nonlinear

activation function and one output layer with linear combinations of radial basis functions.

In neurons the values of weights and bias are adjusted to learn the neural network (Glorot

& Bengio, 2010). A FFNN consists of two phases: a training phase and an application

phase. During the training phase input values are prepared and constraints are adjusted to

improve network performance through learning algorithm. When the training phase is

finished and accurate performance is achieved, the network starts its phase of application

for the proposed task.

52 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

Radial Base Neural Network

A radial basis neural network uses radial basis functions as activation functions. The

architecture of RBNN consists of one input layer, one hidden layer with a nonlinear

activation function and one output layer with linear combinations of radial basis functions

(Nassif, Azzeh, Capretz & Ho, 2016). In this network the neurons value is achieved by

adjusting cross product of both bias and weights. To train this network 70% information is

required and remaining 30% used for testing and validation purpose. During the training

state, constraints are adjusted until required performance is achieved. It is much easier to

design and train RBNN than other neural networks.

Algorithm

Levenberg–Marquardt (LM) algorithm

The Levenberg-Marquardt algorithm is a very modest and forceful technique for

approaching a function. It reduces the activation functions over a space of constraints and

delivers a numerical clarification of the problem. It is suitable for moderate sized problems

in ANNs (Jazayeri, Jazayeri & Uysal, 2016). This training algorithm consists of three basic

phases: first training phase trains the network, according to the desired output value, second

phase validation checked the validity of network and third testing phase test the

information. The Levenberg-Marquardt is faster than Bayesian regularization back

propagation algorithm, but it is very penetrating to the preliminary weights of the network.

Bayesian regularization back propagation algorithm

Bayesian regularization back propagation algorithm used in neural network to absorb

problems and to guesstimate the operative number of constraints essentially required

resolving a specific problem. BR modernizes the weights and bias values according to the

Levenberg-Marquardt optimization. It reduces the arrangement of weights, squared error,

and provides the correct network (Plumb, Rowe, York & Brown, 2005). Overpriced

fractious validation can be escaped by exhausting Bayesian regularization. It also

eliminates the requirement for testing altered numbers of hidden neurons to solve problem.

This training algorithm consists of two phases: training and testing, and it reduces the cost

which used in validation phase. Bayesian regularization back propagation slower than

Levenberg-Marquardt algorithm, but it is useful to solve complex problems.

Training and Testing the Models

The training, testing and validation procedures of the ANNs are implemented on 360 data

permutations, each permutation comprising 5 inputs and 1 target output. Feedforward

neural network used the single layer architecture; the activation function in the hidden layer

is 10 sigmoid and numbers of neurons are 10. When FFNN was trained through Levenberg-

Marquardt algorithm, it passed through three phases: training, validation and testing. The

53 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

dividerand function was used to divide the data. This function divides the complete data

into the following partitions: 70 percent data used for training, 15 percent data used for

testing and 15 percent for validation shown in figure 2.

Figure 2. FFNN using LM Figure 3. FFNN using BR

The identification method is repeated for production of the FFNN with BR training

backpropagation algorithm, it passed through two phases: training and testing. The divider

and function divides the complete data into the following partitions: 70 percent data used

for training and 30 percent data used for testing shown in figure 3. Radial basis neural

network also used the single layer architecture. This network used the maximum number

of neurons are 40 and the number of neurons to add between displays are 5 and goals set

at 0.

Figure 4. RBNN using LM Figure 5. RBNN using BR

RBNN also train using both Levenberg-Marquardt and Bayesian regularization back

propagation algorithms. Levenberg-Marquardt algorithm passed through three phases:

54 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

training, validation and testing, and Bayesian regularization back propagation algorithm

passed through two phases: training and testing shown in figure 4 and figure 5.

Modeling Performance Criteria

In order to evaluate the prediction accuracy of FFNN and RBNN through Levenberg-

Marquardt and Bayesian regularization back propagation training algorithms, and to find

out which algorithm performs well to estimate the duration of software projects, the norms

Mean Square Error (MSE) and Coefficient of determination are used. Chi-square test also

used to check the normality of the dataset. Mean squared error (MSE) measures the

average of the squares of the errors that is the difference between the observed and

predicted value. The values of MSE nearer to zero show good results and it is always

positive (Franses, 2016). If is a direction of n forecasts, and is the direction of

experimental values according to the inputs of the method which produced the predictions,

then the MSE can be calculated through Eq:(1):

Eq:(1)

Coefficient of determination is a number that specifies the percentage of the variation in

the dependent variable that can estimate from the independent variable. The coefficient of

determination signifies the percentage of the records that is the closest to the best fit line.

The answer of Coefficient of determination fall between 0-1 and its maximum value

represented good results (Chen & Braga, 2016). It is denoted by .

Eq:(2)

In the measurements, normality tests are used to conclude that the data set is well-

demonstrated by a normal distribution. To check the normality of data sets Chi-square test

is used. This test is applied to realize the allocations of defining variables fluctuate from

each other (Liu, Tang & Zhang, 2009).

Eq:(3)

Equation (3) denote the chi-square test, shows the observed values and Y shows the

expected values. This test elaborates the normality checks between observed values and

expected values. In measurement means a very lesser results from chi square test explain

that observed data well fit according to expected data and a relationship exist between data

set. A very huge results of the chi - square test means that the fitness of the data is not very

well and there is not a relationship between data.

55 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

RESULTS AND DISCUSSION

The regression plots of the FFNN for the training, validation and testing processes are

displayed in Figure 2 and Figure 3 respectively. Figure 2 demonstrates the performance of

FFNN using LM and Figure 3 demonstrates the performance of FFNN using BR. The

regression plots of the RBNN for the training, validation and testing processes are given in

Figure 4 and Figure 5 respectively. Figure 4 demonstrates the performance of RBNN using

LM and Figure 5 demonstrates the performance of RBNN using BR. From the figures it is

prominent that LM consists of three phases to train the models, whereas BR comprise of

only two phases for this resolution but the performance of both training algorithms are

approximately same. Table no. 2 shows the presentation of both algorithms over FFNN

and RBNN. This table shows the training, testing and validation outcomes, time period

and the number of epochs which is used to train the models.

Table 2. Performance metrics

Performance
metrics

Feedforword Neural network Radial Base Neural network

Levenberg-

Marquardt
(LM)
algorithm

Bayesian

Regularization
(BR) algorithm

Levenberg-

Marquardt
algorithm

Bayesian

Regularization
(BR) algorithm

Best training
performance

65.3233 60.2467 65.7809 56.7057

Best validation
performance

70.6843 0 34.4626 0

Best testing
performance

82.7745 65.0591 85.0380 85.5323

No. of training
epochs

14 123 15 113

Best training

epoch

8 44 9 109

Training time
(in Seconds)

01 13 10 26

The results of these networks, elaborate that BR used less training and testing performance

than LM and LM used less epochs and time as compared than BR. But the validation in

BR is zero. The Less value of performances illustrate better results. To check the

performances of both algorithms, these two networks are run five times and get results in

the form of Mean Square Error (MSE) and Coefficient of determination (R2). Table no. 3

shows the values of both models after applying both algorithms.

Table 3. Statistical Test

Statistical Test Feedforword Neural network Radial Base Neural network

LM BR LM BR

MSE 63.9202 60.9207 63.1766 59.1262

63.6700 60.2009 67.3238 61.5580

73.9866 61.1689 61.3707 61.1453

66.4048 61.5746 60.9565 62.5065

56 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

61.1533 60.9045 67.9373 62.3673

R2 0.85221 0.85883 0.85883 0.86291

0.85259 0.86479 0.86048 0.85751

0.85703 0.85829 0.85829 0.85855

0.86083 0.85727 0.85727 0.85544

0.85831 0.85888 0.85888 0.85542

The less outcome value of MSE deliberate better results. After training of both models,

following results are conducted: the average values of MSE provide less value and R2

provide greater value while using BR.

Figure 6. MSE of FFNN Figure 7. MSE of RBNN

Figure no. 6 reveal the results in MSE to evaluate the performance of both algorithms for

FFNN and Figure no.7 expose the performance of both algorithms for RBNN. Figure no.

8 and Figure no. 9 elaborate the R2 values of both models.

 Figure 8. R2 of FFNN Figure 9. R2 of RBNN

Chi-squared test is used to check the normality of datasets through p-value. Normality test

is compulsory to check that the dataset is in formal form or not. Table no. 3 shows the

normality of the dataset which conducting from both models at 95% confidence interval.

P-values less than 0.05 shows good results and it's elaborate that dataset is in formal form.

57 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

Chi-squared test is realistic between the dataset and the results which are obtained after

applying both algorithms.

Table 3. Normality Test

Chi-Square Tests

Model
Algorithm

Value Df P-Value

FFNN BR 28428.331a 25800 .0005

LM 28428.331a 25800 .0002

RBNN BR 28428.331a 25800 .0001

LM 28428.331a 25800 .0050

The results of Chi-squared test, demonstrate that the relationship between data and results

is in formal form of both models. The p-values of BR and LM are less than 0.05.

CONCLUSION

To estimate the duration of a software project is most precious and important part of the

software development phase. Duration time means the time, which is used to develop a

software project. Two machine learning models are realistic to estimate the duration time

by practicing two different training algorithms. FFNN and RBNN both models are trained

through Levenberg–Marquardt (LM) algorithm which consume three variables (train, test

and valid) and Bayesian regularization back propagation algorithm which consume only

two variables (train and test), it avoid validation process. The performances of these

algorithms are compared through MSE and R2 statistical tool and accomplish that BR

deliver slightly superior outcomes to estimate the duration of software than LM. BR is

more preferred for this determination since it avoids the validation procedure which is cost

effective.

References

Ali, N., & Lai, R. (2016). A method of requirements change management for global

software development. Information and Software Technology, 70:49-67.

Alyahya, M. A., Ahmad, R., & Lee, S. P. (2009). Effect of CMMI-based software process

maturity on software schedule estimation. Malaysian Journal of Computer Science, 22

(2):121-137.

Araujo, R. D. A., Oliveira, A. L., Soares, S., & Meira, S. (2012). An evolutionary

morphological approach for software development cost estimation. Neural Networks, 32:

285-291.

Bisi, M., & Goyal, N. K. (2016). Software development efforts prediction using artificial

neural network. IET Software, 10 (3):63-71.

58 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

Cerpa, N., Bardeen, M., Astudillo, C. A., & Verner, J. (2016). Evaluating different families

of prediction methods for estimating software project outcomes. Journal of Systems and

Software, 112:48-64.

Chen, T., & Braga-Neto, U. M. (2016). Bayesian estimation of the discrete coefficient of

determination. EURASIP Journal on Bioinformatics and Systems Biology, (1): 1.

Czerwonka, J., Nagappan, N., Schulte, W., & Murphy, B. (2013). Codemine: Building a

software development data analytics platform at Microsoft. IEEE software, 30 (4):64-71.

Franses, P. H. (2016). A note on the mean absolute scaled error. International Journal of

Forecasting, 32 (1): 20-22.

Gefen, D., Gefen, G., & Carmel, E. (2016). How project description length and expected

duration affect bidding and project success in crowdsourcing software development.

Journal of Systems and Software, 116:75-84.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics: 249-256.

Halkjelsvik, T., & Jørgensen, M. (2012). From origami to software development: A review

of studies on judgment-based predictions of performance time. Psychological bulletin, 138

(2):238.

Idri, A., Abnane, I., & Abran, A. (2016). Missing data techniques in analogy-based

software development effort estimation. Journal of Systems and Software, 117:595-611.

Jazayeri, K., Jazayeri, M., & Uysal, S. (2016, July). Comparative Analysis of Levenberg-

Marquardt and Bayesian Regularization Backpropagation Algorithms in Photovoltaic

Power Estimation Using Artificial Neural Network. In Industrial Conference on Data

Mining: 80-95.

Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries

forecasting. Expert Systems with applications, 37 (1): 479-489.

Liu, H., Tang, Y., & Zhang, H. H. (2009). A new chi-square approximation to the

distribution of non-negative definite quadratic forms in non-central normal variables.

Computational Statistics & Data Analysis, 53 (4):853-856.

Lopez-Martín, C. (2015). Predictive accuracy comparison between neural networks and

statistical regression for development effort of software projects. Applied Soft Computing,

27:434-449.

López-Martín, C., & Abran, A. (2015). Neural networks for predicting the duration of new

software projects. Journal of Systems and Software, 101:127-135.

Lopez-Martin, C., Chavoya, A., & Meda-Campaña, M. E. (2013). Use of a feedforward

neural network for predicting the development duration of software projects. In Machine

Learning and Applications, 12th International Conference, 2: 156-159.

59 Khalid et al... An Approach to Estimate

Gomal University Journal of Research [GUJR] Vol 33 Issue 1 JUNE 2017 ISSN: 1019-8180

Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2016). Neural network models for

software development effort estimation: a comparative study. Neural Computing and

Applications, 27 (8):2369-2381.

Ozcan, B., & Fıglali, A. (2014). Artificial neural networks for the cost estimation of

stamping dies. Neural Computing and Applications, 25 (3-4):717-726.

Park, H., & Baek, S. (2008). An empirical validation of a neural network model for

software effort estimation. Expert Systems with Applications, 35 (3):929-937.

Pendharkar, P. C. (2010). Probabilistic estimation of software size and effort. Expert

Systems with Applications, 37 (6):4435-4440.

Plumb, A. P., Rowe, R. C., York, P., & Brown, M. (2005). Optimization of the predictive

ability of artificial neural network models: A comparison of three ANN programs and four

classes of training algorithm. European Journal of Pharmaceutical Sciences, 25 (4):395-

405.

Urbanek, T., Prokopová, Z., Silhavy, R., & Sehnálek, S. (2014). Using analytical

programming and UCP method for effort estimation. In Modern Trends and Techniques in

Computer Science: 571-581.

